Aluminium Gallium Indium Phosphide
   HOME

TheInfoList



OR:

Aluminium gallium indium phosphide (, also AlInGaP, InGaAlP, GaInP, etc.) is a
semiconductor material A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
that provides a platform for the development of novel multi-junction photovoltaics and optoelectronic devices, as it spans a direct
bandgap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
from deep ultraviolet to infrared. AlGaInP is used in manufacture of
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (cor ...
s of high-brightness red, orange, green, and yellow color, to form the
heterostructure A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in many ...
emitting light. It is also used to make
diode laser The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
s.


Formation

AlGaInP layer is often grown by
heteroepitaxy Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epit ...
on
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
or
gallium phosphide Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. Impure polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single ...
in order to form a
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy ...
structure.
Heteroepitaxy Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epit ...
is a kind of epitaxy performed with materials that are different from each other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of a different material. This technology is often used to grow crystalline films of materials for which single crystals cannot 1D view. Another example of heteroepitaxy is
gallium nitride Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it ...
(GaN) on
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sapphir ...
.


Properties

AlGaInP is a semiconductor, which means that its valence band is completely full. The eV of the band gap between the valence band and the conduction band is small enough that it is able to emit visible light (1.7 eV - 3.1 eV). The band gap of AlGaInP is between 1.81 eV and 2 eV. This corresponds to red, orange, or yellow light, and that is why the LEDs made from AlGaInP are those colors.


Zinc blende structure

AlGaInP's structure is categorized within a specific unit cell called the zinc blende structure. Zinc blende/sphalerite is based on a
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
lattice of anions. It has 4 asymmetric units in its unit cell. It is best thought of as a face-centered cubic array of anions and cations occupying one half of the tetrahedral holes. Each ion is 4-coordinate and has local tetrahedral geometry. Zinc blende is its own antitype—you can switch the anion and cation positions in the cell and it has no effect (as in
NaCl Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
). In fact, replacement of both the zinc and sulfur with carbon gives the diamond structure.Toreki, Rob. "The Zinc Blende (ZnS) Structure." ''Structure World''. N.p., 30 Mar. 2015. Web.
/ref>


Applications

AlGaInP can be applied to: *Light emitting diodes of high brightness *Diode lasers *Quantum well structures *Solar cells (potential). The use of aluminium gallium indium phosphide with high aluminium content, in a five junction structure, can lead to solar cells with maximum theoretical efficiencies (
solar cell efficiency Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with lat ...
) above 40%


AlGaInP laser

A diode laser consists of a semiconductor material in which a p-n junction forms the active medium and optical feedback is typically provided by reflections at the device facets. AlGaInP diode lasers emit visible and near-infrared light with wavelengths of 0.63-0.76 μm. The primary applications of AlGaInP diode lasers are in optical disc readers, laser pointers, and gas sensors, as well as for optical pumping, and machining.


LED

AlGaInP can be used as an LED. An LED is composed of a p-n junction which contain a p-type and an n-type. The material used in the semiconducting element of an LED determines its color. AlGaInP is one of type of LEDs used for lighting systems. Another is
indium gallium nitride Indium gallium nitride (InGaN, ) is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of indi ...
(InGaN). Slight changes in the composition of these alloys changes the color of the emitted light. AlGaInP alloys are used to make red, orange and yellow LEDs. InGaN alloys are used to make green, blue and white LEDs.


Safety and toxicity aspects

The toxicology of AlGaInP has not been fully investigated. The dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of aluminium indium gallium phosphide sources (such as
trimethylgallium Trimethylgallium, often abbreviated to TMG or TMGa, is the organogallium compound with the formula Ga(CH3)3. It is a colorless, pyrophoric liquid. Unlike trimethylaluminium, TMG adopts a monomeric structure. When examined in detail, the monomeric ...
,
trimethylindium Trimethylindium, often abbreviated to TMI or TMIn, is the organoindium compound with the formula In(CH3)3. It is a colorless, pyrophoric solid. Unlike trimethylaluminium, but akin to trimethylgallium, TMI is monomeric. Preparation TMI is prepared ...
and
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
) and industrial hygiene monitoring studies of standard
MOVPE Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
sources have been reported in a review. Illumination by an AlGaInP laser was associated in one study with slower healing of skin wounds in laboratory rats.


See also

*
Indium phosphide Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors. Manufacturing Indium phosphide ca ...
*
Indium gallium phosphide Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with ...
*
Aluminium gallium phosphide Aluminium gallium phosphide, , a phosphide of aluminium and gallium, is a semiconductor material. It is an alloy of aluminium phosphide and gallium phosphide. It is used to manufacture light-emitting diodes emitting green light. See also * Alumini ...
*
Indium gallium arsenide phosphide Indium gallium arsenide phosphide () is a quaternary compound semiconductor material, an alloy of gallium arsenide, gallium phosphide, indium arsenide, or indium phosphide. This compound has applications in photonic devices, due to the ability to ...


References

;Notes * *''High Brightness Light Emitting Diodes'':G. B. Stringfellow and M. George Craford, Semiconductors and Semimetals, vol. 48, pp. 97–226. {{DEFAULTSORT:Aluminium Gallium Indium Phosphide III-V semiconductors Aluminium compounds Gallium compounds Indium compounds Phosphides III-V compounds Light-emitting diode materials Zincblende crystal structure